Что является важнейшим свойством почвы. Почвы, их состав, свойства и типы

К числу общих физических свойств почвы относят относительную плотность, объемную плотность и пористость .

Относительная плотность почвы - это отношение массы ее твердой фазы к массе воды в том же объеме при температуре +4° С.

Величина относительной плотности почв зависит от плотности входящих в нее частиц минералов и их соотношения, а также от количества органического вещества.

Обычно плотность минеральных горизонтов почв колеблется в пределах 2,4-2,8, а органогенных от 1,4 до 1,8 (торф). Плотность верхних гумусированных горизонтов почв в среднем равна 2,5-2,6, нижних - 2,6-2,7.

Объемная плотность почвы - масса единицы объема абсолютно сухой почвы, взятой в естественном сложении, выраженная в г/см3.

Объемная плотность - одно из важнейших свойств, определяющих способность почвы пропускать и удерживать влагу, воздух, сопротивляться орудиям обработки почвы и т. д. Объемная плотность зависит от типа растительности, механического и минералогического составов почвы (дисперсности), сложения, оструктуренности и степени обработки почв.

Наименьшая объемная плотность обычно наблюдается в верхних горизонтах почв, наибольшая - в иллювиальных и глеевых горизонтах. У хорошо оструктуренных, рыхлых дерново-подзолистых почв наименьшая объемная плотность наблюдается в лесных подстилках - 0,15-0,40 г/см3, в гумусовых горизонтах она повышается до 0,8-1,0, в подзолистых - до 1,4-1,45, иллювиальных- до 1,5-1,6 и в материнской породе - до 1,4-1,6 г/см3.

Величина объемной плотности почв зависит от типа растительности. Так, в гумусовых горизонтах под сомкнутыми ельниками она равна 0,9-1,1, под березняками- 1,0-1,3, под злаками - 1,2-1,4 г/см3.

Почву считают рыхлой , если объемная плотность гумусовых горизонтов равна 0,9-0,95,

нормальной - 0,95-1,15,

уплотненной - 1,15-1,25 и

сильноуплотненной - более 1,25 г/см3.

Пористость (порозность или скважность) - суммарный объем всех пор и промежутков между частицами твердой фазы почвы.

Ее вычисляют по плотности и объемной плотности почвы и выражают в % объема почвы по формуле.

Различают несколько форм пористости, главнейшими из них являются капиллярная и некапиллярная .

Капиллярная пористость обычно измеряется в лабораторных условиях и равна количеству воды, удерживаемому тонкими капиллярными промежутками между частицами твердой фазы почвы. Обычно чем больше глинистых частиц, тем больше капиллярная пористость. В оструктуренных почвах вода между комочками вытекает из-за большого размера пор, а в самих комочках удерживается в капиллярах.

Разница между общей и капиллярной пористостью составляет некапиллярную пористость.

Наибольшая пористость (80-90%) наблюдается в лесных подстилках, травяном войлоке, торфах, т. е. органогенных горизонтах.

В минеральных гумусированных горизонтах она равна 55-65%, в верхних безгумусных 45-55%, в нижних горизонтах почвы может быть ниже 45%.

Минимальная пористость наблюдается в глеевых горизонтах почв и равна около 30%.

Для развития корневых систем древесных пород наилучшие условия создаются при пористости почв, равной 55-65%; при пористости 35-40% корни проникают в почву с трудом, а при пористости глеевых горизонтов она практически становится корненепроницаемой.

Большое значение имеет некапиллярная пористость. Для наиболее освоенных корнями горизонтов она, как правило, более 10%; при снижении ее до 3% нижние горизонты почв становятся малодоступными для корней. Некапиллярная пористость обеспечивает проникновение воздуха в почву-аэрацию. Для нормального развития растений важно, чтобы почвы имели высокую капиллярную пористость и пористость аэрации не менее 20% объема почвы.

ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА ПОЧВ

Ряд процессов, протекающих в почвах, определяется их физико-механическими свойствами, которые проявляются при воздействии внешних нагрузок и подразделяются на деформационные, прочностные и реологические.

Деформационные свойства характеризуют поведение почв при нагрузках, не приводящих к их механическому разрушению. К ним относятся сжимаемость, просадочность, консолидация (уплотнение) .

Прочностные свойства характеризуют поведение почв при нагрузках, вызывающих их разрушение - сдвиг, разрыв .

Реологические свойства характеризуют поведение почвы под давлением во времени. К ним относятся вязкость, пластичность, тиксотропность .

Понятие «физико-механические свойства» в почвоведении имеет более широкий диапазон применения, чем в механике, геологии, грунтоведении.

Соответственно к физико-механическим свойствам в почвоведении относят также набухание, усадку, липкость , т. е. свойства высокодисперсных систем, проявляющиеся без механических воздействий со стороны

Изучение физико-механических свойств почв важно не только с позиций понимания механизмов физических процессов, протекающих в них, но имеет большое прикладное значение для сельского хозяйства. Физико-механические свойства определяют условия обработки почв, дают возможность получить количественные оценки энергетических затрат на их обработку и выбрать оптимальные сроки полевых работ, при которых в наименьшей степени деформируются почвы и обработка производится с наименьшими затратами горючего

ДЕФОРМАЦИОННЫЕ СВОЙСТВА ПОЧВ

Сжимаемость почв под нагрузкой происходит при их механической обработке Особенно остро необходимость изучения этого вопроса стоит в настоящее время, когда на полях используется тяжелая сельскохозяйственная техника и происходит активное уплотнение поверхностных горизонтов почв

Сжимаемость почв определяется их минералогическим и гранулометрическим составом, характером порозности и трещиноватости, оструктуренностью почв и прочностью структуры, сложением и ориентацией глинистых частиц, их размером и формой, влажностью почв и гидрофильностью коллоидной фракции

Высокая исходная пористость почв служит показателем возможности достаточно большого уплотнения почв при обработке ее тяжелой техникой

Сжимаемость почв приводит к уменьшению общей порозности, изменениям размеров и форм пор, размеров и форм структурных отдельностей

Сжимаемость характеризуется коэффициентом уплотнения

Сжимаемость почвы - не полностью обратимая деформация. При многократных нагрузках компрессионная кривая имеет вид петли, что обусловлено разрушением структурных связей и накоплением остаточной деформации.

Максимальная остаточная деформация будет соответствовать особенностям физических и химических свойств конкретных почв и дает возможность прогнозировать минимальную порозность при различных обработках в реальных условиях, т. е. максимально возможное уплотнение их.

Частным случаем проявления сжимаемости почв и грунтов является просадочность .

Просадкой называется понижение поверхности почв в результате уменьшения их пористости и растворения содержащихся в них солей при замачивании.

С этим явлением связывают такие формы рельефа, как степные блюдца, поды. Особенно существенны просадки на лёссовых почвогрунтах при введении их в орошаемое земледелие, что объясняется высокой пористостью пород, малой гидрофильностью, выносом легкорастворимых солей, являющихся «клеющими» веществами для их структуры.

Просадочность почв и грунтов может в некоторых случаях создавать значительную ирригационную пестроту микрорельефа на орошаемых массивах, что вызывает перераспределение поливных вод на поверхности поля, создает мозаику увлажнения и может привести к формированию комплексности почвенного покрова.

Все это усложняет обработку почв и сельскохозяйственную эксплуатацию орошаемых площадей, создает пестроту посевов, снижает эффективность орошения.

ПРОЧНОСТНЫЕ СВОЙСТВА

Сдвиг = Связность характеризует способность почвы оказывать сопротивление разрывающему усилию, стремящемуся разъединить механические элементы, т. е. определяет свойство взаимного сцепления частиц почв.

Выражается она в кг/см2.

Связность необходимо учитывать при оценке таких важных производственных характеристик почвы, как удельное сопротивление, сцепление . Этот показатель характеризует прочность структуры, что также важно знать при оценке мелиоративных характеристик почв.

Связность зависит от гранулометрического и минералогического состава почв, количества и состава клеющих компонентов, обменных оснований, содержания органического вещества, влажности.

Оструктуривание почв, увеличивая прочность отдельных агрегатов, в целом уменьшает связность почв, облегчает их обработку, оптимизирует развитие корневых систем.

В наибольшей степени на связность почв оказывает влияние содержание в них воды.

Влияние органического вещества на связность почв двояко.

Гумус увеличивает связность песчаных почв и снижает у глинистых за счет увеличения их агрегированности и снижения площади соприкосновения.

Наиболее связными являются глины, малооструктуренные почвы, насыщенные одновалентными катионами. В легких почвах органическое вещество и некоторая влажность увеличивают связность, в суглинистых, наоборот, уменьшают.

Связность почвы влияет на качество обработки и сопротивление воздействию машин и орудий.

С прочностью сцепления почвенных частиц тесно связана твердость почв.

Твердостью называется свойство почвы в естественном залегании сопротивляться сжатию и расклиниванию. Измеряется твердость при помощи твердомеров и выражается в кг/см2. При одной и той же плотности твердость ненабухающих почв в зависимости от влажности может существенно меняться. Твердость почв обусловлена теми же характеристиками, что и связность (минералогией, дисперсностью, наличием электролитов, составом обменных оснований, содержанием гумуса, влажностью).

Она оценивается уже при полевом описании. При этом выделяются следующие градации: рыхлая, рыхловатая, уплотненная, твердая, очень твердая почва.

Твердость почв изменяется в очень широких пределах: от 5 до 60 кг/см2 и выше. Самой большой твердостью в сухом состоянии характеризуются слитые почвы и солонцы.

Оценивая твердость генетических горизонтов как наиболее твердые, можно выделить солонцовые, слитые, иллювиальные горизонты, плужную подошву, почвенные коры.

Твердость почв определяет тяговое усилие сельскохозяйственных орудий. Сила тяги, отнесенная к единице рабочей площади обрабатывающего орудия, называется удельным сопротивлением.

При снижении влажности резко увеличивается твердость почв, растет их удельное сопротивление, увеличиваются энергетические затраты на обработку. При увеличении влажности увеличивается липкость почв, растет сила сцепления почвенных частиц с поверхностью обрабатывающих орудий, что также приводит к увеличению удельного сопротивления.

При повышенной влажности не происходит крошения почвы и образования агрономических ценных агрегатов, происходит заглыбление почв. Обработка сухих почв распыляет почву, что снижает их противоэрозионную стойкость и существенно ухудшает поверхностные свойства.

Удельное сопротивление почв в естественных условиях имеет диапазон от 0,2 до 1,2 кг/см2.

РЕОЛОГИЧЕСКИЕ СВОЙСТВА

Одним из главных реологических свойств почв является их пластичность

Пластичностью называется способность почв менять свою форму (деформироваться) под действием внешних сил (без разрывов и трещин) и сохранять полученную форму после прекращения механического воздействия

Пластичность характеризуется числом Аттеберга. Верхним пределом пластичности считают влажность, при которой почва начинает течь, а нижним - влажность, при которой почва перестает скатываться в шнур без трещин диаметром более 3 мм.

I) верхний предел пластичности, или предел текучести, - массовая влажность почв, при которой стандартный конус под действием собственной массы (76 г) погружается в почвенный образец на 10 мм;

2) нижний предел пластичности - граница между полутвердым и пластичным состоянием почвы - массовая влажность, при которой образец можно раскатать в жгут диаметром в 3 мм без образования разрывов и трещин;

3) число пластичности - разность между числовым выражением верхнего и нижнего пределов пластичности. Число пластичности показывает диапазон влажности, в котором проявляются пластичные свойства почв.

Пески имеют число пластичности - 0,

супеси - 0-7,

суглинки - 7-17,

глины - более 17.

Пластичность определяется гранулометрическим составом и формой слагающих почву частиц.

Пластичность глин вдвое больше пластичности суглинков и втрое больше пластичности супесей.

Пески практически непластичны. Числа пластичности для них соответственно равны 35-40, 10-20, 5-10 и 0.

Наибольшей пластичностью обладают набухающие частицы пластинчатой и чешуйчатой формы.

При прочих равных условиях почвы, имеющие в илистой фракции монтмориллонитовые минералы, всегда будут более пластичны, чем почвы с преобладанием каолинита.

Пластичность почвы широко используется при определении механического состава почв, при скатывании шнуров и шаров, при расчетах тяговых усилий по обработке почв.

Пластичность определяет консистенцию почвы - степень подвижности слагающих почву частиц под влиянием механического воздействия при различной влажности.

Выделяют несколько форм консистенции:

а) твердая - почва имеет свойства твердого тела, не пластична;

б) полутвердая - переходное состояние между твердым и пластичным телом;

в) вязкопластичная - почва обладает пластичностью, но не прилипает к другим телам;

г) липкопластичная - почва обладает пластичностью и прилипает к другим телам;

д) вязкотекучая - почва в состоянии растекаться толстым слоем;

е) жидкотекучая - почва может растекаться тонким слоем.

В обычных условиях для почв характерны четыре первые формы консистенции. Однако в некоторых почвах с сильным переувлажнением в отдельные периоды наблюдаются и текучие состояния. Они определяют подвижность (ползучесть ) почв - способность ее в переувлажненном состоянии течь под влиянием собственной массы Текучесть почв активно проявляется в тундре, а также на склонах в зонах выклинивания грунтовых вод При этом создаются специфические солифлюкционные формы рельефа

Частный случай текучести - тиксотропность , когда переувлажненные почвы приобретают текучесть при механическом воздействии и снова переходят в твердое состояние в покое Подобное явление обусловливает высокую уязвимость тундровых ландшафтов, когда даже при небольших механических воздействиях происходит сползание тиксотропных масс по водоупорам и на поверхность выходят мерзлые неплодородные грунты

Определенное влияние оказывает текучесть (ползучесть) и на развитие эрозионных процессов на склонах

С пластичностью почв связана их вязкость - внутреннее трение, возникающее при «течении» почвы.

Вязкость почв следует изучать при исследовании эрозионных процессов, а также при расчетах производственных характеристик, связанных с обработкой почв.

Липкость - свойство дисперсионных систем прилипать к поверхности различных тел. Липкость почв количественно характеризуется усилием в ньютонах, необходимым для отрыва металлической пластинки от поверхности почвы, и выражается в Н/см2 (в 9,8 Па).

Проявляется липкость лишь во влажном состоянии, что обусловлено силами молекулярного сцепления, возникающими на границах раздела между минеральными частицами, тонким слоем воды и поверхностью соприкасающегося предмета. Таким образом, решающая роль в проявлении липкости принадлежит слабосвязанной воде, и это свойство называется адгезией , а слой воды называется адгезионным слоем.

Липкость почв тесно связана с гранулометрическим составом, оструктуренностью почв, их сложением. Все это определяет характер и свойства поверхности раздела почва - плоскость предмета.

Диспергирование на любом уровне увеличивает площадь внутренней поверхности, усиливает гидрофильность почв, вызывает рост ее липкости. Так, липкость (в Н/см2) песков и супесей (при прочих равных условиях) равна 0,2-0,3, покровных суглинков - 0,6, глин 5-6, минеральных частиц менее 1 ммк - 10-11.

Обесструктуривание почв, нарушение их сложения также увеличивают липкость.

Липкость почв в наибольшей степени определяется их влажностью, поэтому основными показателями липкости являются:

а) влажность начального прилипания (W0);

б) влажность максимального прилипания (Wmax);

в) влажность максимальной липкости (L).

Кривые зависимости липкости от влажности имеют определенный вид (рис.), однако значения V0, Wmax и L для разных почв различны.

Липкость, обусловливая связь между отдельными почвенными частицами, играет важнейшую роль в образовании макроструктуры.

Липкость определяет такое важное производственное свойство почв, как их физическая спелость.

По липкости почвы делятся на предельно липкие (>147 Па), сильно вязкие (49,0-147 Па), средние (19,6-49,0 Па), слабо вязкие (19,6 Па).

Спелость почвы - такое состояние, при котором она не прилипает, хорошо крошится, имеет наименьшее удельное сопротивление и не пылит.

Различают физическую и биологическую спелости.

Физическая спелость наблюдается при оптимальной влажности, которая колеблется в пределах 40-60% полной влагоемкости, при которой исчезает способность почвенных частиц прилипать к сельскохозяйственным орудиям, но возникает способность самоагрегироваться.

Нижний предел физической спелости для разных почв различен, следовательно, липкость почв определяет оптимальные сроки и условия проведения полевых работ на конкретных почвенных разностях. Раньше всех достигают состояния физической спелости почвы легкого гранулометрического состава и гумусированные черноземы.

Биологическая спелость , по Д. И. Менделееву, такое состояние почвы, при котором она «подходит, как тесто» от наличия в ней углекислого газа или максимальной биологической активности микроорганизмов (разложения и переработки органических веществ, освобождения элементов питания).

Большое значение для характеристики липкости почв имеют такие внешние по отношению к ним факторы, как мощность и масса сельскохозяйственных орудий, быстрота их движения на поле, состояние их поверхности, материал, из которого изготовлены режущие части. Учет почвенных и внешних факторов, определяющих прилипание почв, является важным резервом экономии энергетических ресурсов при планировании и проведении полевых сельскохозяйственных работ.

Набухание - это свойство почв и глин увеличивать свой объем при увлажнении.

В основе набухания лежит свойство коллоидов сорбировать воду и образовывать гидратные оболочки вокруг минеральных и органических частиц, раздвигая их. Чем больше внутренняя поверхность почвенной массы, чем больше водоудерживающая способность почвенных частиц, тем более мощную пленку они могут создавать вокруг себя, тем больше набухаемость такой системы. Однако основная роль в набухании почв принадлежит не столько дисперсности минеральной основы, сколько ее минералогическому составу.

Больше набухают глины, особенно состоящие из монтмориллонита и насыщенные Na или Li. Набухание выражают в объемных % по отношению к исходному объему по формуле.

Усадка - сокращение объема почвы при ее высыхании. Это явление обратное набуханию, зависящее от тех же условий, что и набухание. Измеряется в объемных % по отношению к исходному объему по формуле

При усадке почва может покрываться трещинами, возможны формирование структурных агрегатов, разрыв корней, усиление испарения. Усадка вызывает изменение процессов разложения органических веществ, увеличение аэробиозиса почвы.

Усадка характеризуется уменьшением объема почв при их высыхании и дегидратации.

Способность почв к набуханию (усадке) характеризуется следующими параметрами:

1) степенью набухания (усадки) , измеряемой по изменению объема образца почвы при увлажнении (высыхании) и выражаемой в процентах от исходного объема

2) влажностью набухания - влажность в процентах, при которой прекращается набухание. Влажность набухания зависит от исходной влажности почвы, чем она ниже, тем выше влажность набухания, тем больше степень набухания. Следовательно, переосушение почв увеличивает амплитуду объемных изменений, связанных с набуханием и усадкой, что вызывает увеличение давления набухания;

3) давлением набухания , которое появляется в почве при невозможности или ограниченности объемных деформаций внутри почвенного профиля. Оно может быть измерено с помощью внешней нагрузки и равно силе, при которой не будет происходить изменения объема при увлажнении. Между степенью и давлением набухания существует прямая зависимость;

4) деформационными напряжениями , возникающими в почве при иссушении и способствующими образованию трещин на поверхности почв и структурных отдельностей.

Набухание и усадка в той или иной степени наблюдаются во всех почвах, но в наибольшей степени они характерны для слитых почв и солонцов, что и определяет их крайне неблагоприятные физические свойства. Высокая набухаемость слитых смектитовых почв является диагностическим признаком и создает их специфический облик и структуру. Высокие давления, появляющиеся внутри почвы при их увлажнении и набухании, приводят к выпячиванию массы почв и образованию кочковатого микрорельефа - гильгаи .

При высыхании напряжения разрыва вызывают растрескивание почв и образование массивных слитых тумб и глыб, очень плотных и твердых. Глубокая трещиноватость способствует перемешиванию почвенной массы (частицы с поверхности падают в трещины) и приводит к формированию мощного, но недифференцированного профиля.

Физико-механические свойства почвы важно учитывать при различных видах использования почв и почвенного покрова: при механической обработке почвы в земледелии, при использовании почв в качестве основания для сооружений, при дорожном и аэродромном строительстве, при использовании почвы в качестве строительного материала, в гидротехнике при строительстве каналов и водохранилищ, при гидротехнической мелиорации почв (ирригация и дренаж) и т. д. Благоприятные физико-механические свойства способствуют удешевлению всех видов использования почв, в то время как неблагоприятные могут существенно удорожить его и в ряде случаев сделать невозможным.

ТЕПЛОВЫЕ СВОЙСТВА ПОЧВ

Колебания температуры - важный компонент почвенного микроклимата. Следуя годичным циклам изменения температуры воздуха, температура почвы оказывает существенное влияние на многие протекающие в ней процессы.

ПОСТУПЛЕНИЕ ТЕПЛОТЫ В ПОЧВУ

Тепловая энергия в почве имеет несколько источников:

1) лучистая энергия солнца;

2) атмосферная радиация;

3) внутренняя теплота земного шара;

4) энергия биохимических процессов разложения органических остатков;

5) радиоактивный распад.

Вклад двух последних источников ничтожно мал и обычно не принимается во внимание в балансовых расчетах.

Внутренняя теплота земного шара также незначительна. Вклад этого источника в тепловой поток велик лишь в районах активной вулканической деятельности.

Атмосферная радиация приобретает существенное значение в балансе теплоты в районах с неустойчивой атмосферной деятельностью, в периоды вторжения теплых или холодных воздушных масс.

Таким образом, главным источником теплоты в почве является лучистая энергия солнца.

Реальное количество поступающей в почву солнечной тепловой энергии существенным образом коррелируется географической широтой, временем года, состоянием атмосферы, экспозицией склонов, т. е. углом падения солнечных лучей на поверхность, характером растительного покрова, а также тепловыми свойствами самой почвы

ТЕПЛОВАЯ ХАРАКТЕРИСТИКА ПОЧВЫ

Совокупность свойств, обусловливающих способность почв поглощать и перемещать в своей толще тепловую энергию, называется тепловыми свойствами.

К ним относятся: теплоотражательная способность почв, теплоемкость, теплопроводность, теплоусвояемость.

1. Теплоотражательная способность почв , или способность почв отражать определенную долю падающей на ее поверхность солнечной радиации, характеризуется значением альбедо (А) - долей коротковолновой солнечной радиации, отражаемой их поверхностью (Q ОТР), выраженной в процентах от общей солнечной радиации (Qобщ):

А=Q ОТР /Qобщ 100,

где Qобщ и Q ОТР выражаются в Дж/(см2 мин).

Альбедо зависит от очень многих свойств почв - их цвета, количества и качественного состава органического вещества, гранулометрического состава, оструктуренности, состояния поверхности, влажности.

Диапазон отражения лучистой энергии поверхностью почв колеблется от 8-10 до 30% .

Естественное варьирование величины альбедо в ландшафтах усиливается характером растительного и снежного покрова.

2. Теплопоглотительная способность почв одного и того же региона обусловливает разделение почв на холодные и теплые: темноцветные почвы более теплые, чем светлые; оструктуренные почвы с шероховатой поверхностью более теплые, чем бесструктурные.

Почвенный покров является важнейшим природным образованием. Его роль в жизни общества определяется тем, что почва представляет собой основной источник продовольствия, обеспечивающий 95-97 % продовольственных ресурсов для населения планеты. Площадь земельных ресурсов мира составляет 129 млн. км 2 или 86,5 % площади суши. Общая пахотнопригодность земель оценивается различными исследователями по-разному: от 25 до 32 млн. км 2 .

Представления о почве, как о самостоятельном природном теле с особыми свойствами появились в конце XIX в, благодаря В.В.Докучаеву ,- основоположнику современного почвоведения. Он создал учение о зонах природы, почвенных зонах, факторах почвообразования.

Почва состоит из твердой (минеральной и органической), жидкой и газообразных фаз. Для всех почв характерно уменьшение содержания органических веществ и живых организмов от верхних горизонтов почв к нижним.

Твердая часть почвы состоит из минеральных и органических веществ. По дисперсности минеральные вещества делятся на две группы: с диаметров более 0,001 мм (обломки пород и минералов, минеральные новообразования) и менее 0,001 мм (частицы выветривания глинистых минералов, органических соединений). Полидисперсность частиц твердой части почвы обусловливает ее рыхлость. Часть объема почвы, заполненного воздухом или водой, называют пористостью почвы, которая составляет 40 – 60 %, иногда до 90 % (торф), бывает до 27,5 (суглинки).

В состав минеральной части почвы входят Si, Al, Fe, K, Na, Mg, Ca, P, S и другие химические элементы, которые, в основном, находятся в окисленном состоянии, а также в виде солей: угольной, серной, фосфорной, хлористо-водородной.

В состав органической части входят и органические вещества (преимущественно в гумусе), где содержится углерод, водород, кислород, азот, фосфор, сера и другие элементы. Многие элементы растворены в почвенной влаге, заполняющей часть пор, а в остальной части пор находится воздух.

Образование почв происходит на Земле с момента возникновения жизни и зависит от многих факторов.

Субстрат, на котором образуются почвы. От характера материнских пород зависят физические свойства почвы (пористость, водоудерживающая способность, рыхлость и т.д.). Они определяют водный и тепловой режим, интенсивность, перемешивания веществ, минералогический и химический составы, первоначальное содержание элементов питания, тип почвы.

Растительность – зеленые растения (основные создатели первичных органических веществ). Поглощая из атмосферы углекислоту, из почвы воду и минеральные вещества, используя энергию света, они создают органические соединения, пригодные для питания животных.


С помощью животных, бактерий, физических и химических воздействий органическое вещество разлагается, превращаясь в почвенный гумус. Зольные вещества наполняют минеральную часть почвы. Неразложившийся растительный материал создает благоприятные условия для действия почвенной фауны и микроорганизмов (устойчивый газообмен, тепловой режим, влажность).

Животные организмы, выполняющие функцию преобразования органического вещества в почву. Сапрофаги (земляные черви и др.), питающиеся мертвыми органическими веществами, влияют на содержание гумуса, мощность этого горизонта и структуру почвы. Из наземного животного мира на почвообразование наиболее интенсивно влияют все виды грызунов и травоядные животные.

Микроорганизмы (бактерии, одноклеточные водоросли, вирусы) разлагающие сложные органические и минеральные вещества на более простые, которые в дальнейшем могут использоваться самими микроорганизмами и высшими растениями.

Одни группы микроорганизмов участвуют в превращениях углеводов и жиров, другие – азотистых соединений. Бактерии, поглощающие молекулярный азот воздуха, называют азотфиксирующими. Благодаря их деятельности, атмосферный азот могут использовать (в виде нитратов) другие живые организмы. Почвенные микроорганизмы принимают участие в разрушении токсических продуктов обмена высших растений, животных и самых микроорганизмов в синтезе витаминов, необходимых для растений и почвенных животных.

Климат, влияющий на тепловой и водный режимы почвы, а значит на биологический и физико-химические почвенные процессы.

Рельеф, перераспределяющий на земной поверхности тепло и влагу.

Продолжительность процесса почвообразования для различных материков и широт составляет от нескольких сотен до нескольких тысяч лет.

Хозяйственная деятельность человека в настоящее время становится доминирующим фактором в разрушении почв, снижении и повышении их плодородия. Под влиянием человека меняются параметры и факторы почвообразования – рельефы, микроклимат, создаются водохранилища, проводится мелиорация.

Основное свойство почвы – плодородие. Оно связано с качеством почв. В разрушении почв и снижении их плодородия выделяются следующие процессы:

Аридизация суши – комплекс процессов уменьшения влажности обширных территорий и вызванное этим сокращение биологической продуктивности экологических систем. Под действием примитивного земледелия, нерационального использования пастбищ, беспорядочного применения техники на угодьях почвы превращаются в пустыни.

Эрозия почв, разрушение почв под действием ветра, воды, техники и ирригации. Наиболее опасна водная эрозия – смыв почвы талыми, дождевыми и ливневыми водами. Водные эрозии отмечаются при крутизне уже 1 - 2˚. Водной эрозии способствует уничтожение лесов, вспашка по склону.

Ветровая эрозия характеризуется выносом ветром наиболее мелких частей. Ветровой эрозии способствует уничтожение растительности на территориях с недостаточной влажностью, сильными ветрами, непрерывным выпасом скота.

Техническая эрозия связана с разрушением почвы под воздействием транспорта, землеройных машин и техники.

Ирригационная эрозия развивается в результате нарушения правил полива при орошаемом земледелии. Засоление почв в основном связано с этими нарушениями. В настоящее время не менее 50 % площади орошаемых земель засолено, потеряны миллионы ранее плодородных земель. Особое место среди почв занимают пахотные угодья, т.е. земли, обеспечивающие питание человека. По заключению ученых и специалистов, для питания одного человека следует обрабатывать не менее 0,1 га почвы. Рост численности жителей Земли напрямую связан с площадью пахотных земель, которая неуклонно сокращается. Так в РФ за последние 27 лет площадь сельскохозяйственных угодий сократилась на 12,9 млн. га. Причинами этого являются нарушение и деградация почвенного покрова, отвод земель под застройку городов, поселков и промышленных предприятий.

На больших площадях происходит снижение продуктивности почв из – за уменьшения содержания гумуса, запасы которого за последние 20 лет сократились в РФ на 25 – 30 %, а ежегодные потери составляют 81,4 млн.т. Земля сегодня может прокормить 15 млрд человек. Бережное и грамотное обращение с землей сегодня стало самой актуальной проблемой.

14 ноября 2012 г. 21:28

Состав и свойства почвы

Состав и свойства почвы

Почва. Это природное образование, состоящее из почвенных горизонтов, формирующихся в результате преобразования поверхностных слоев литосферы под воздействием воды, воздуха и живых организмов.

Химический состав почвы. Почву образуют разнообразные по составу минеральные и органические вещества. При изучении химического состава почвы определяют следующие 11 элементов: Si, Al, Fе, Ca, Мg, К, Na, S, Т, Ti и Mn. Анализ данных химического состава позволяет установить общее содержание в почве того или иного элемента, степень обогащения им почвы и определить характер изменения его содержания с глубиной, а следовательно, установить направленность почвообразовательного процесса.

Для питания растений необходимы следующие элементы: N, Р, Ca, Mg, S и Fe. Часть из них присутствует в почве в большом, другая - в незначительном количестве. Чаще всего растения испытывают недостаток в азоте, фосфоре и калии. Содержание тех или иных элементов в почве различно и зависит от условий образования и свойств почвы. Так, черноземы содержат 0,4... 0,5 % N, 0,2...0,3 % P 2 O 5 ,0,1 ...0,3 % SO 3 , в то время как в дерново-подзолистых почвах количество азота не превышает 0,1 ... 0,2 %, фосфора - 0,1 . ..0,3 % и т. д. Степень обеспеченности почвы питательными веществами зависит не только от их содержания в почве, но и от формы химических соединений, в которых они находятся, так как доступность тех или иных соединений для растений различна.

Физические свойства почвы. К ним относятся плотность твердой фазы, объемная масса и пористость.

Плотность твердой фазы - это отношение массы почвы к массе равного объема воды. Плотность твердой фазы зависит от минералогического состава почвы и содержания в ней органического вещества. Плотностью сложения почвы называется единица объема сухой почвы в естественном (ненарушенном) сложений.

Объемная масса почвы - это масса 1 см 3 абсолютно сухой почвы в граммах при естественном сложении. Чем меньше объемная масса, тем богаче может быть почва водой и воздухом.

Пористостью (скважностью) почвы называют общий объем всех пор в почве, выраженный в процентах к ее общему объему.

Твердая часть почвы состоит из минеральных и органических веществ.

Минеральные вещества почвы. Они представляют собой измельченную в разной степени материнскую почвообразующую породу, на долю которой приходится 80... 97% всей твердой части. В результате выветривания в почвообразующей породе образуются простейшие соединения, легкорастворимые в воде. Минеральная часть почвы состоит из песка, пыли и глины. Все механические частицы размером от 0,01 до 1 мм называют песком, а менёе 0,01мм - глиной. Соотношение в почвах частиц крупнее и мельче 0,01 мм характеризует их гранулометрический состав, который оказывает большое влияние на их свойства.

По механическому составу почвы подразделяют на песчаные связные (содержание глины 5... 10%), супесчаные (глины 10... 25 %), легкосуглинистые (глины 20... 40 %), среднесуглинистые (глины 40... 55 %), легко - и тяжелоглинистые (глины 60... 97 %). Песчаные и супесчаные почвы называют легкими, так как они легко поддаются обработке, а суглинистые и глинистые - тяжелыми, так как их обработка связана с большими энергетическими затратами. Легкие почвы - рыхлые, хорошо пропускают влагу и воздух, весной быстро прогреваются. Но они плохо удерживают воду, бедны элементами питания. Тяжелые почвы - плотные, плохо пропускают влагу и воздух. Вода в них может застаиваться, а почва заболачиваться. Весной тяжелые почвы прогреваются медленно, поэтому их обработку начинают позднее. Содержание элементов питания в них выше, чем в песчаных и супесчаных почвах.

В твердую часть почвы входит также перегной, в котором содержатся многие элементы питания растений, но в недоступной для них форме. Под воздействием микроорганизмов медленно происходит переход их в доступную форму. Содержание перегноя в верхнем горизонте почв неодинаково и обычно колеблется от 1 до 5 %, но иногда достигает и 15 %. Чем больше перегноя в почве, тем она плодороднее.

Надо отметить, что в некоторых почвах содержание в твердой части минеральных веществ небольшое (15 ... 20 %). Это болотные или торфяные почвы, содержащие большие массы неразложившихся или полуразложившихся растительных остатков, пропитанных перегноем и обычно избыточно увлажненных. После осушения болотные почвы используют в сельском хозяйстве.

Жидкая часть почвы. Это вода и растворенные в ней вещества и соединения, образующие почвенный раствор, из которого растения получают необходимые элементы питания. Содержание воды в почвах может колебаться от десятых долей процента до 40…60 %, что зависит от гранулометрического состава почвы и количества перегноя.

Газообразная часть. Это почвенный воздух, который заполняет все поры и пустоты почвы. Почвенный воздух отличается от атмосферного меньшим содержанием кислорода и большим диоксида углерода, который выделяют разлагающиеся растительные остатки и живые организмы при, дыхании, В почвенном воздухе обычно встречаются аммиак, иногда метан и другие газы. Чем влажнее почва, тем меньше в ней воздуха, так как вода вытесняет его из почвенных пор. Для нормального роста и развития растений содержание воздуха в почве не должно быть ниже 10... 15 % ее объема.

Живая часть почвы. Она состоит из микроорганизмов, червей, личинок, насекомых и др. В каждом килограмме почвы находятся миллионы различных микроорганизмов. Они сосредоточиваются у корней растений, где добывают себе пищу из отмерших частей корней и создают новые органические вещества.

Состав почвы постоянно трансформируется под воздействием воды, тепла и живых организмов, при этом происходят изменения в ее физических свойствах и химическом составе. Кроме того, преобразовывает почву и человек, обрабатывая, удобряя и эксплуатируя ее.

Водные свойства почвы. Влагоемкостью называют количество воды, которое почва может удерживать в себе. Вычисляют влагоемкость (% к сухой почве) по формуле

где P - пористость, % объема почвы;

V- плотность сложения, г/см 3 .

Влажностью называется общее количество воды, содержащееся в почве. Влажность - непостоянная величина и в одной и той же почве может колебаться от полной влагоемкости в дождливое время года до ничтожно малых величин в период засухи.

Водопроницаемостью почвы называется ее способность впитывать и фильтровать воду.

Воздушные свойства почвы. К ним относятся воздухоемкость и воздухопроницаемость.

Воздухоемкость - способность почвы содержать то или иное количество, воздуха.

Воздухопроницаемость - способность почвы пропускать через себя воздух. Она зависит от гранулометрического состава и структуры почвы. В целом количество воздуха в почве может колебаться от 0 до 40 % объема почвы.

Тепловые свойства почвы . Основной источник теплоты для прогревания почвы - энергия Солнца, количество которой определяется географическим положением местности.

Теплоемкость - это количество теплоты в джоулях, которое необходимо для нагревания 1 г (массовая теплоемкость) или 1 см 3 (объемная теплоемкость) почвы на 1 °С. Она сильно колеблется не только от соотношения твердой, жидкой и газообразной фаз, но и от состава этих фаз. С увеличением влажности почвы теплоемкость быстро возрастает, поэтому песчаные легко пересыхающие почвы быстрее прогреваются («теплые» почвы), чем влажные глинистые («холодные» почвы).

Теплопроводность - способность почвы проводить теплоту от теплых слоев к холодным. Поэтому сухие и плотные почвы быстро проводят тепло, но и быстро его теряют, чего можно избежать, если верхний слой почвы взрыхлить (боронование, шлейфование и т. п.). Рыхлые, переувлажненные и богатые органическим веществом почвы медленно прогреваются, но дольше сохраняют тепло.

Притекающая к поверхности солнечная энергия не вся поглощается почвой (теплопоглощение), а часть ее отражается в пространстве и теряется безвозвратно.

Плодородие почвы. Это ее способность удовлетворять потребность растений в элементах питания, воде, обеспечивать их корневые системы достаточным количеством воздуха, тепла и питательными веществами, необходимыми для нормальной жизнедеятельности.

Различают естественное (потенциальное) и эффективное (искусственное) плодородие почвы.

При правильном использовании и охране почв их плодородие повышается - происходит воспроизводство, плодородия. Интенсивное земледелие предполагает расширенное воспроизводство плодородия почв, что особенно важно, для почв с низким естественным плодородием.

Любой огородник знает, что при выращивании садово-огородных культур урожайность на его участке зависит в первую очередь от земли, её состава и свойств. Известно, что каждой природной зоне соответствуют свои особенные климатические условия. Из-за таких отличий в погодных условиях формируются и разные виды почв, которые обладают и разными характеристиками.

Основные свойства почв

Все почвы различаются внешнему виду, структуре и многим другим характеристикам. По ним оценивают состав грунта и относят его к тому или иному виду. Вот основные критерии качества грунта:

Цвет - внешнее свойство, описание почвы, по которому можно отнести её к чернозёму, серозёму, краснозёму или желтозёму. Конечно же, цвет полностью зависит от того, насколько влажна почва, что входит в её состав. Например, больше количество гумуса окрашивает почву в тёмный или даже чёрный цвет. А белесый цвет говорит о наличии солей - кальция, магния, гипса, кремния и о вымывании минеральных веществ. Красные и бурые тона - присутствие железа и марганца в породе.

Этот показатель не так прост, как кажется. Влажность зависит не только от метеорологических условий.

Проще говоря, если напитать влагой землю разного типа то и выглядеть она будет по-разному. Оказывают влияние подземные течения, уровень грунтовых вод, механический состав почвенной смеси.

Например, преобладание крупных песчаных частиц не удерживает влагу, пропуская её в нижние слои. Также быстро вода испаряется с такого вида грунта. Наличие частиц глины приводит к увеличению её влагоемкости.

Описание и характеристика видов

Почвы, с которым чаще всего работают садоводы, огородники, агрономы, бывают такими:

  • песчаные;
  • супесчаные;
  • суглинистые;
  • глинистые;
  • торфяные.

Правильно организовать посадку растений обозначает знать особенности почвы и способы улучшения её свойств правильной обработкой, внесением нужных минеральных веществ и удобрений.

Это лёгкий вид почвы, состоящий в основном из песчаных зёрен и небольшой части глинистых частиц. Она хорошо пропускает воду и чрезвычайно сыпуча. Если взять в ладонь горсть земли, сформировать комок из неё не получится. Она рассыпается. Другие её качества - высокая воздухопроницаемость, теплопроводность, лёгкая обрабатываемость. Удобрения вносить в такой грунт сложно. Они там не задерживаются, уходят вместе с водой в более глубокие грунтовые слои.

Такие земли бедны и не очень пригодны для выращивания культур. Но выращивать садовые деревья, а также морковь, лук и клубнику на ней вполне приемлемо. Для окультуривания песчаника хорошо вводить торф, перегной и глиняную муку.

Супесчаный тип

Эта почва лучшая по свойствам , похожа по составу на песчаную, но все же содержит больший процент глинистых примесей. Взяв в руку горстку и сжав её, можно получить комок. Но он плохо держит форму. Качества такого грунта более ценные. Она лучше удерживает влагу и минеральные вещества, воздухопроницаема, медленнее пересыхает, лучше прогревается, более лёгкая в обработке. Выращивать можно все культуры, не забывая о методах повышения плодородия земли. Способы улучшения такого грунта: внесение калийных и органических удобрений, мульчирование, сидерация и довольно частое рыхление.

Суглинистые земли

Самая лучшая по характеристикам разновидность почвы, называемая ещё суглинок. Содержит самый большой процент питательных веществ. Она отлично сохраняет влагу и наделена способностью распределять её по толще горизонта. Легкая в обработке и сохраняет тепло. Из такого образца хорошо формуется ком и можно раскатать «колбаску», но нельзя согнуть в кольцо. Это специальный приём в агрономии для определения механического состава грунта. Такую землю нужно не улучшать, а только поддерживать её плодородные свойства, для чего проводят её мульчирование и вносят перегной при осеннем перекапывании.

Почва глиняная

Или глинистая, как ещё её называют . Содержание глинистых пород до 80%. Очень тяжёлая и плотная, плохо впитывают воду, в мокром состоянии липнет к обуви. Структура комковатая.

Если взять ком влажной земли, можно легко слепить длинную колбаску и свернуть в кольцо. При этом оно не растрескается и не разорвётся.

Можно сказать, что похожа она на пластилин. Соответственно, качества её ухудшаются: содержит мало воздуха, плохо прогревается и пропускает воду. Вырастить на такой земле садово-огородные культуры нелегко.

Грамотное окультуривание поможет стать и такой земле плодородной. Для этого регулярно вносят известь, золу, компост, навоз. Тщательное рыхление и мульчирование также пойдут на пользу.

Кислотный баланс

Огромное значение на выращивание культур оказывает кислотность почвы , оптимальное значение которой называют кислотно-щелочным балансом. Он является одним из важнейших показателей качества плодородной земли. Обозначают кислотность значком «рН». Когда это значение равно семи единицам, кислотность называют нейтральной. Если рН ниже семи земли кислые. При рН выше семи называют щелочными.

С увеличением кислотности происходит повышение содержания алюминия и его солей в грунте, а также марганца и других минералов. Это не даёт нормально развиваться растениям. Более того, в таком грунте начинают активно размножаться болезнетворные бактерии, микроорганизмы и вредители. Внесённые удобрения не разлагаются. Все это приводит к нарушению дисбаланса почвы.

Определить кислотность очень просто в домашних условиях. Для этого используют простой метод лакмусовых индикаторов. Закисленными почвы бывают очень часто. Самый распространённый способ - известкование. При этом известь вытесняет из верхнего слоя земли алюминий и его соли, заменяя их на кальций и магний. Этим снижается токсическое воздействие на растение.

Количество извести на квадратный метр зависит от типа почв и их характеристик. В таблице даны нормы внесения извести для понижения кислотности .

Принцип прост: чем тяжелее и глинистее почва, тем в большем количестве извести она нуждается. Важно помнить, что при внесении извести одновременно закладывают борные удобрения. Кислотность нужно проверять периодически, если требуется регулировать.

Ведь этот показатель влияет на плодородность земли, а соответственно, и на урожайность.

виды почв


Основное и самое важное свойство почв - плодородие . В почве растения закрепляются своими корнями, из нее получают минеральные вещества, воду и кислород.

Если климат определяет возможность возделывания винограда в той или иной местности, влияет на сахари­стость и кислотность сока ягод, в основном определяет производственную специализацию виноградарства и ви­ноделия, то почва формирует урожай и его основные ка­чества: придает ягодам и продуктам их переработки оттенки вкуса и аромата, часто неуловимые химическими анали­зами, но уловимые при органолептической оценке.

Во всех странах мира, где по климатическим условиям можно выращивать виноград, его насаждения встречаются на разных по химическому и механическому составу поч­вах. Он растет на черноземах и дерново-подзолистых поч­вах, на сероземах и буроземах, красноземах и каштановых почвах, на малоплодородных песках и почти бесплодных для других сельскохозяйственных культур каменистых почвах.

В связи с этим иногда считают, что виноград не требо­вателен к почвам и для него вполне подходит любая из них, кроме заболоченных, солончаков и солонцов. На самом деле виноградное растение при всей его пластичности требовательно к почвенным условиям.

Почвы рыхлые, незасоленные, с достаточным количеством питательных веществ и оптимальным увлажнением способствуют сильному росту, обильному плодоношению и долголетию виноградных насаждений.

Присутствие в почве вредных солей или постоянного переувлажнения, наоборот, снижает продуктивность на­саждений и нередко приводит их к гибели.

Наука и практика располагают многочисленными дан­ными, подтверждающими влияние почвы на величину и качество урожая. Так, по данным А. А. Егорова насаждения сорта Тавквери дают виноград, из которого приготовляют прекрасные сто­ловые и десертные вина, а из этого же сорта, выращенного в отделении «Кара-Чанах», вина получаются посредствен­ного качества.

По данным А. П. Чефранова, почвы двух первых отделений серо-каштановые суглинистые, обра­зованные на лёссовидных суглинках, а третьего - серо- каштановые щебенчатые суглинистые, подстилаемые на глубине 80-85 см валунно-галечниковыми наносами. Сорт Ркацители ведет себя противоположно Тавквери. Лучшие десертные вина Кара-Чапах получаются из винограда, выращенного на серо-каштановых щебенчатых суглини­стых почвах.

В этой же стране наилучший виноград столового сорта дают виноградники Апшеронского полу­острова, где почвы песчаные, образованные на морских песках и ракушечниках. Общеизвестно, что на Черно­морском побережье Крыма, Краснодарского края, в до­лине реки Алазани (Кахетия) многолетней практикой для ряда сортов выявлены почвы и участки, на которых полу­чают наиболее высокий и наиболее качественный урожай.

Без преувеличения можно сказать, что все сорта ви­нограда чутко реагируют на смену почвенных условий, особенно сорта-подвои. Из этого, однако, не следует, что независимо от природной зоны или района существуют наиболее ценные почвы только для определенных сортов и определенного качества урожая.

Например, для сортов Пино черный, Шардоне, из кото­рых приготовляют первоклассные шампанские вина, луч­шими почвами считаются бурые горно-лесные и перегнойно-карбонатные почвы, но это справедливо только для определенных районов, имеющих свои специфические природные условия (Абрау-Дюрсо, Шампань).

В зоне распространения таких же почв, но с несколько иными природными условиями (Кахетия) указанные сорта не дают высокоценных шампанских виноматериалов, тогда как другие сорта (Ркацители, Хихви, Саперави, Каберне) дают материал для приготовления первоклассных столовых вин.

Очень хорошие шампанские вина получают в Алма-Атинской области и Киргизии из Пино черного и Рислинга, произрастающих на темно-каштановых почвах и черноземах.

Если сопоставить климат и другие природные условия этих мест, то можно убедиться в том, что они заметно разли­чаются между собой. Отсюда следует, что оценивать ка­чества каждой почвы для виноградного растения, его сор­тов и производственного назначения урожая необходимо но сравнению с другими почвами внутри каждой природ­ной зоны и района, а не по сравнению с почвами дру­гих природных зон. Более того, оценку почвы необходимо проводить во взаимосвязи с другими природными усло­виями.